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ABSTRACT 

The work documented here involves the investigation of the 
applicability of H- control theory to the unique problems of 
large space structure(LSS) control. A complete evaluation of any 
technique as a candidate for large space structure control 
involves (1) analytical evaluation, (2) algorithmic evaluation, 
( 3 )  evaluation via simulation studies, and ( 4 )  experimental 
evaluation. This report documents the results of analytical. and 
algorithmic evaluations. 

The analytical evaluation involves the determination of the 
appropriateness of the underlying assumptions inherent in the HW 
theory, the determination of the capability of the Ha theory to 
achieve the design goals likely to be imposed on an LSS control 
design, and the identification of any LSS specific 
simplifications or complications of the theory. The results of 
the analytical evaluation are presented in the form of a tutorial 
on the subject of H a  control theory with the LSS control designer 
in mind. 
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The algorithmic evaluation of HOD for LSS control pertains to 
the identification of general, high level algorithms for 
effecting the application of HW to LSS control problems, the 
identification of specific, numerically reliable algorithms 
necessary for a computer implementation of the general 
algorithms, the recommendation of a flexible software system for 
implementing the H- design steps, and ultimately the actual 
development of the necessary computer code. The results and 
status of the algorithmic evaluation are presented. 

Finally, the state of the art in HW applications is 
summarized with a brief outline of the most promising areas of 
current research. Recommendations on further work are included, 
with emphasis on the LSS control problem. 



I" 

The original concept of an Ha performance criterion is that 
of Zames [l], who introduced the concept of minimum sensitivity 
and provided a solution in the SISO case. However it is highly 
probable that the need for such an optimization criterion has at 
various times been recognized by frequency domain oriented 
control engineers for quite some time. In any event, Zames 
motivation appears to be due to the recognition by the late 
1970's that the by then well established LQG approach to control 
design suffered from fundamental limitations with regard to 
robustness(sensitivity). The fact that LQG based designs are 
inherently non-robust was quite surprising due to the fact that 
full state feedback quadrati.c optimal control designs have long 
been known to possess excellent robustness properties in the SISO 
case [2] and Safanov and Athans [ 3 ]  had recently proved a 
corresponding result f o r  MIMO full state feedback designs. The 
unexpected and unwanted result that the addition of a Kalman 
filter estimator can lead to arbitrarily small stability margins 
even in the SISO case was dramatically illustrated by an example 
of Doyle [ 4 ] .  This led to abandonment of indirect approaches to 
achieving robustness and ultimately to the direct solution of the 
robustness optimization (minimum sensitivity, Ha) problem by 
Zames. 

The solution to the more difficult MIMO Ha optimization 
problem was obtained first by Francis, Helton and Zames [SI in 
1984, who credit Cheng and Pearson [ 6 ]  with an independent 
solution. Whatever the origin of the final solution, the 
stabilizing controller parametrization of Desour et al.[7] w a s  
the breakthrough that turned the HOY optimization problem into a 
practical control design approach, as opposed to a mathematical 
excercise in well established interpolation theory. In fact, it 
is expected that the mathematical tables will now be turned and, 
rather than the controller parametrization yielding practical 
applications of known mathematical theory, it will now motivate 
research into new mathematical optimization problems. This is 
the philosophy behind Vidyasagar's book on the factorization 
approach to control system synthesis 181. 

0 

/ 

While the "complete" solution to the original Hap 
optimization problems exists, work continues on the problem of 
controller order reduction, the complexity of the required 
algorithms, the possible equivalence to certain restricted 
classes of LQG problems(frequency weighted approaches, in 
particular), and the problem of simultaneously achieving both 
performance and robustness. 

The approach taken here is pragmatic. Ha will be evaluated 
based on what can be done at the present time, with emphasis on 
the LSS problem, in regard to both the analytical issues of 
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applicability and the practical issues of software development. 
An outline of the HOD philosophy and theory is presented in a 
tutorial fashion. General algorithms that are well established 
are then presented and the actual numerical algorithms required 
are outlined in detail. Finally, possible design approaches 
appropriate for the LSS problem are outlined and design studies 
are suggested. 

Although the original H- problems were minimum sensitivity 
problems, a number of classical control design problems can be 
cast in the same form. The standard problem formalization is a 
way of casting any one of the problems of disturbance 
attenuation, command tracking, and robust stabilization into the 
form of a disturbance attenuation problem. The general form of 
the standard problem is given in block diagram form in Figure 1, 
where W(s) is a vector of command and/or disturbance Inputs, Z ( s )  
is a vector of regulated outputs which may be either tracking 
errors or actual regulated quantities, U ( s )  is a vector of 
controller outputs, and Y(s) is a vector of available 
measurements. 

Figure 1 

The relationships between the various signals are 

2 = GiiW + Gi2U, 

Y = G21W + G22U, 

and 

U = KY. 
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These equations can be represented in the form of the more 
detailed block diagram of Figure 2. 0 

Figure 2 

The significance of the stpndard problem is that it provides 
a way of unifying several different problems into one problem 
which can be solved via H- optimization techniques. The approach 
to casting a particular problem in standard form is to (1) define 
the signals 2, W, Y, and U in tcrms of the appropriate signals of 
the actual system at hand, (2) write equations for these signals 
based on the interconnections of the actual system, and ( 3 )  
rewrite these equations in the form of Equations (1) - ( 3 ) .  As 
an example casting a simple prohlem in standard form consider the 
system of Figure 3 ,  where the general design goal is to minimize 
the tracking error R - C. 
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Figure 3 

Gx t C  

In Figure 3 ,  the following definitions are made: 

K 

Z = R - C  

W = R  

-- 

U = KC 

Y = C  

Then 

Z = W - Gx(W - CJ) = (1 - Gx)W + GxU 

Y = Gx(W - U) 

U KY 

which are in the form of a standard problem. 

Before continuing with the parametrization of all 
stabilizing controllers, some quick definitions are needed. 

DEFINITION 

functions with real coefficients which are stable and I G(a) 
a. For f u n c t i o n s  in RHm, the norm can be calculated via 

The space RHm(sca1ar case) consists of all those rational 
I s: 
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DEFINITION 
The space RHoo(multivariab1e case) consists of all those 

matrices whose entries are stable rational functions with real 
coefficients and 11 G ( a )  112 < a. For matrices in RH- the norm can 
be calculated as 

a 

DEFINITION 

functions with real coefficients which are stable and I G(m) 
0. For functions in RH2, the norm can be calculated via 

The space RHz(sca1ar case) consists of all those rational 
I = 

DSFINITION 

vlsctors whose entries are stable rational functions with real 
coefficients and whose elements are in RH2. For vectors in RH2 
the norm can be calculated as 

The space RHz(multivariab1e case) consists of all those 0 

Simply stated, RHa, is the space of stable transfer functions 
(either scalar or multivariable) and RH2 is the space of finite 
energy signals (scalar or vector valued). In Ha, optimal control, 
the optimality criterion f o r  choosing the controller K is to 
minimize 
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where T(s) is the closed loop transfer function from W(s) to Z ( s )  
in the standard problem. The significance of this optimality 
criterion stems from the fact that 

ll 

which simply means that our goal is to minimize the output energy 
of the standard system for the “worst” input of unit energy. 
This goal is in contrast to the usual quadratic optimality 
criterion in which the goal is to minimize the output energy for 
a single, particular input. 

The fact that Ha, optimization is not appropriate for all 
control design problems is seldom pointed out. However, in cases 
in which the system inputs (disturbances) are well known and the 
system model is also well known, there is little justification 
f o r  the additional complexity of H- optimal control design. 
Indeed, in this case the usual quadratic optimal control approach 
should yield better performance than that of an Ha, approach. 

The mathematical theory on which H- optimization is based 
requires that the optimality criterion be stated in a form that 
requires only the choice between a set of transfer functions or 
matrices in RH-. However, once the optimal transfer function 
out of this set is chosen, it must in some way yield a controller 
which also internally stabilizes the system. The stabilizing 
controller parametrization accomplishes this goal by providing a 
one to one correspondence between elements of RHa, and all 
stabilizing controllers. 

The controller parametrization is based on factorization 
theory in RHm. A simplified derivation in the scalar case can be 
found in Irwin [SI; the complete derivation in the general case 
can be found in Vidyasagar [SI or Francis ClOJ. 

DEFINITION 

matrix G is a set of matrices in RH- which satisfy 
A doubly co-prime factorization of a transfer function 

X V I I - 6  



It turns out that a doubly co-prime factorization of G22 is 
all that is needed to parametrize both the set of all stabilizing 
controllers and all stable transfer functions from W to 2.  It is 
assumed that stabilizing Gzz is equivalent to stabilizing G in 
the standard problem. The calculation of a doubly co-prime 
factorization is addressed in Nett et al. Ell]. 

The end result of the controller parametrization is that all 
controllers which stabilize the system of the standard problem 
can be expressed as 

= (Xi - QNi)-l(Yi - QMi). (11) 

where Q is some matrix in RH-. 

The parametrization of Equation 11 has significance well 
beyond the Ha, optimal control problem. For example, it provides 
a simple stability check for a given candidate controller K; 
simply solve Equation 11 for Q and if Q is in RH- the controller 
stabilizes the system and if Q is not in RH- the controller does 
not stabilize the system. 

0 

The closed loop transfer function matrix of the system of 
the standard problem can also be parametrized with Q as the 
parameter: 

2 = [Ti - T2QT3]W 

where 

Ti = Gii + GizMYiGzi 

T2 = Gi2M 

T3 = MiG21. (15) 

For systems which are open loop stable a valid doubly co-prime 
factorization is 
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Y = O  

Yl = 0 

X = I  

x1 = I 

M = I  

Mi = I 

N = G22 

Ni = G 2 2  

so that a stabilizing controller is given by 

and the closed loop transfer fullction matrix parametrization is 

Ti = Gii 

T2 = Gi2 

T3 = Gzi. 

Notice that there is almost no work involved in parametrizing the 
problem when the system is open loop stable. In LSS problems 
such a situation can often be arranged via low bandwidth pre- 
compensation of the rigid body behavior. However, this fact does 
nothing to simplify the Hw optimization process. 

The standard H m  optimizaticn problem can be stated as 
finding a matrix Q in RH- such that 

is minimized. This is sometimec called the model matching 
problem. Once such a Q is founC;, Equation 11 can be used to find 
a controller which simultaneously achieves the optimization and 
stabilizes the system. 

A few comments are in orde!- regarding why the HW problem is 
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difficult. The reasons are most easily seen by considering only 
those situations in which G is open loop stable and examining 
situations for which the equation e 
TI - T2QT3 = 0 

can be solved. First, T2 and T3 must have left and right 
inverses, respectively, which implies that the system must have 
at least as many regulated quantities as controller outputs and 
at least as many external inputs as measurements. Neither of 
these conditions is overly restrictive as they are both 
equivalent to requiring that the system not have too many sensors 
or too many effectors. Then 

Q = Tz-1TiT3-1. 

However, to be able to find a stabilizing controller, Q must be 
in RH-, which implies that T2-1 and T3-1 must be in RHs. This is 
equivalent to saying that T2 and T3 must have no transmission 
zeros in the right half of the complex plane and that they be 
non-strictly proper. In other words, T2 and T3 must be minimum 
phase and the resulting inverses must be realizable. The case in 
which they are non-minimum phase is the usual problem considered 
in H- optimization theory. The case in which they are strictly 
proper can be dealt with via weighting matrices and therefore 
yields sub-optimal designs. 

' 
lution o f  the Model Matchi_n~ Prpblem 

The theory of the Hw optimization step is quite advanced and 
involved in the multivariable case. Probably the. best way to 
approach a presentation of the solution to derive it for  the much 
simpler SISO case and then simply present the generalizations 
required for the solution in the MIMO case. A fairly simple SISO 
derivation using well known system theoretic concepts is 
contained in [9]. Another SISO derivation is contained in 
Francis [lo], which also gives an authoritative proof (but not 
really a derivation) for the MIMO case. Various other approaches 
are documented in Cheng and Pearson [SI, Safanov and Verma C121, 
Kwakernaak [13], and Grimble [14]. The approach here is to 
present the required steps in the solution in the form of an 
algorithm taken from Francis [ l o ]  with comments relating to the 
differences between the SISO and MIMO cases. 

As mentioned previously, the major problem involved with 
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the model matching problem is that the inverses of T2 and T3 may 
not exist as matrices in RH-. The consequence is that the 
optimality criterion is non-zero. The theory of Hw optimization 
tells how to find a Q in RH- which achieves the minimum value. 
Although the theory is general enough to handle non-square, 
singular T2 and T3, in the interest of clarity the following 
explanation and algorithm deals only with the square and 
nonsingular case. The completely general theory can be found in 
Francis [ l o ]  and a more compact explanation without proofs can be 
found in Irwin C91. 

We begin with the problem of minimizing 

Ti - TzQTzT3 

where Ti, Tz, and T3 are in RH-. This problem is converted to 
another equivalent problem by using inner-outer factorizations of 
T2 and T3. An inner-outer factorization of a matrix G is two 
matrices Gi and Go such that 

where 

Gi-Gi = I 

and Go is right invertible with the right inverse in RH-. In the 
case G is square, invertible, and is in RH-, Go is nonsingular in 
RH-. A co-inner-outer factorization of G is given by 

G = GcoGci 

where 

GcoT is right invertible in RH- 

and 

The first step in the Hao optimization solution is to find 
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an inner-outer factorization of T 2  and a co-inner-outer 
factorization of T3: 

T 2  T2iT20 

A description of a reliable state-space approach to calculating 
inner-outer factorizations can be found in Francis [lo]. 
The closed loop transfer function matrix can then be written as 

Since inner and co-inner factors have unity norm by definition 
it is true that 

Letting 

and 

X = T2oQT3co 

then 

Now if X in RHao can be found to minimize the norm, then Q in RH- 
can be found by solving Equation 25, since T 2 o  and T 3 c o  are 
invertible in RH-. Still more work is involved, however, before 
the application of the fundamental theory for finding such an X. 

The next step is to find a minimal antistable/stable 
decomposition such that 
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where Ri is completely unstable ( Ri' is in RHoo ) and strictly 
proper and R2 is in HQ). The stable part of R is trivially 
included in X by letting 

x = xi + x2 

where 

X2 = R2. 

Then we have 

where Ri is antistable and Xi is stable. This means that the H- 
problem reduces to the problem of finding the closest stable 
matrix to a fixed antistable matrix. Finding a fixed antistable 
matrix Ri such that Equation 30 holds is the main added 
difficulty incurred for the case of singular T2 and T3. However 
the iterative procedure required obscures the central issues and 
is not included, since no additional algorithms or theories are 
required. The calculation of the antistable/stable decomposition 
of R is potentially the least reliable step in the calculation of 
an HQ) optimal controller, since the corresponding state space 
representation of R must be converted to nearly block Jordan 
form; this process is infamous for its numerical instabilities. 

The next step in the process of calculating Q is to find a, 
the minimum value of the optimality criterion: 

The value of a can be calculated by 

a2 = max { eigenvalues of W c W o  } (32) 

where Wc and Wo are the controllability and observability 
grammians of any state-space realization of Ri ( A , E , C )  and can be 
calculated by solving the Liapunov equations 



AWc + WcAT = BBT 

ATWo + WoA = CTC. 

From Equation 31 we also have 

minll Ri/(a+B) - Xi/(a+B)'II- = a/ (a+B)  

( 3 3 )  

( 3 4 )  

(35) 

where B r 0. 

Let 

R' = Ri/(a+B) ( 3 6 )  

and 

X' = Xi/(a+B). 
0 

(37) 

By Equation 35 

Equation 38 seems rather unnecessary, but it turns out that it is 
easier to find X' such that 

II *' - X' 1p I 1 (39) 

than it is to find Xi in the original problem equal to a 
specified value. In any case when we find X' which satisfies 
Equation 39 we have 

and since 13 is arbitrary we can find X' as close to the optimal 
as is desired. 
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The next, and final, step in the optimization procedure is 
to find X' such that with R '  given in Equation 36 , the 
relationship of Equation 33 holds. To begin, let ( A ,  B, C) be a 
realization of R' and set 

N = (I - WoWc)-l. ( 4 1 )  

LI = ( A ,  N T ,  C ,  0 )  (42) 

L 2  = (-AT, NWoB, B T ,  I ) .  (43) 

Then an X' (not the only one) which satisfies Equation 39 is 
given by 

and the Ha, optimization problem is solved, at least to an 
arbitrarily tight tolerance. The preceding development can be 
summarized as an algorithm: 

Cast the problem at hand in the form of the standard problem 
of Equations 1 - 3 .  

Find a doubly co-prima factorization of G 2 2  which satisfies 
Equations 9 and 10. 

Parameterize the closed loop transfer function matrix by 
using the results of Step 2 to find TI, T2, and T3 of Equations 
13 - 15. 

Find inner-outer and co-inner-outer factorizations of Tz and 
T3. 
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Use Equations 24 and 25 to find J3 and X. 

&ixsLfi 

Find an antistable/stable decomposition of R, obtaining R 1 ,  
R2, and X2. 

EdLeJLl 

Calculate a, the optimal norm, using Equations 32 - 3 4 .  

Choose a B .> 0 to achieve the desired tolerance in Equation 
40 - 

Calculate R' from Equation 36. 

Calculate X' from Equations 4 1  - 4 4 .  

EdiaLl l  

Calculate Xi from Equation 37 and X from Equation 28. 

Step 12 

Calculate Q by solving Equation 25. 

ziLmLl3 

Calculate the H- optimal controller from Equation 11. 

Although the algorithm is stated in rather concise form, 
most of the separate steps involve a series of calculations 
themselves. The software requirements are discussed in the next 
section. 
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Due to the complexity of the algorithms for accomplishing Hm 
control designs, a preliminary software system is under 
development. The purpose of the preliminary software is to lend 
flexibility and reliability to the software development process. 
The philosophy on which the software system is based is to 
develop a relatively small number of independent commands 
accessible via the particular operating system in use. Data is 
shared between these different low-level commands via a "state 
space system" representation which is sufficiently flexible to 
allow for all types of numerical data storage and which relies on 
the sequential f5le capabilities of the particular computer. An 
added benefit of this approach is that internal memory 
requirements are those of each particular module, rather than the 
memory required f o r  the total design process. This approach is 
currently implemented on an MSDOS based 32-bit COMPAQ computer 
with Microsoft Fortran. However, the approach is fully 
consistent with any operating system and Fortran compiler capable 
of providing an interface between the operating-system command 
line interpreter and Fortran program modules. This is certainly 
the case for MSDOS and UNIX based operating systems and can at 
the very least be modified for use on DEC VMS based machines. Of 
course, once design methods for  Ha control become well 
established, the preliminary system can be converted to a more 
conventional single-module form, with the added advantage of the 
ability to directly evaluate memory requirements based on the 
experience of the preliminary system. 

The only representation for shared data between modules is 
that of state space system representations stored in sequential 
files on system disk space. This representation allows for the 
storage of general linear continuous and discrete-time systems, 
two-dimensional array data, one-dimensional array data, and 
scalar data. For example, the system 

y = Cx + Du 

would be stored in a file named "systeml" in the following form: 
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1st Re (=or # inputs(m1, # outputs(p1, # states(n) 

0 - rows of A - rows of B - rows of C - rows of D. 
An i x j matrix 2 would be stored in file "2 "  as: 

so that a matrix is stored in the form of a system with j inputs, 
i outputs, and 0 states. A scalar quantity is stored as a 0 
state system with 1 input and 1 output. 

Low level modules are kept as simple as possible to allow 
for simplified debugging and to minimize internal storage. 
Typically, these modules do not destroy the contents of the input 
files. A list of the low level modules which exist at this time 
and their functions follows. Linear algebraic routines are 
taken, when possible, from LINPACK and EISPACK. 

0 

SADD A B C 

Takes the systems contained in A and B y  adds them as if 
their respective transfer function matrices were added, and 
places the result in the file C. 

SMULT A B C 

Takes the systems contained in A and B, multiplies them as 
if their respective transfer function matrices were 
multiplied, and places the result in the file C. 

SINV A C 

Takes the system A ,  inverts it as if its transfer function 
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matrix were inverted, and places the result in file C. 
Limited to invertible systems (non-strictly proper). 

SCOM A B C D 6 

Takes individual matrix elements of a system representation 
A, B, C, D in separate files and places them in a single 
system file format in S. 

SSEP S A B C D 

Takes the system representation S and places the matrices 
A, B, C, D in separate files. 

SSTRAN S 1  T 52 

Applies the similarity transform T to S1 and places the 
result in S2.  

SHTRANS S1 52 

Performs the state space operations on S1 which are 
equivalent to forming GT(-s) and places the result in S2.  

ZCRIC A B Q R 2 

Forms the ”Hamiltonian” or ”2-matrix’’ required for Laub’s 
Riccati equation solution [15]. A, B y  Q, R are the equation 
coefficient matrices and Z is the resulting Hamiltonian 
matrix. (continuous form) 

ZCLIA A Q Z 

Same function as ZCRIC except for the solution of a 
Liapunov equation. (continuous form) 

CSCHURS 2 W 1  W2 

Forms an orthogonal similarity transformation which is 
used in Laub’s method for solving Riccati and Liayunov 
equations. W1 and W2 are matrices formed from blocks 
of the transformation. 

RSCHUR A T C 



Transforms the matrix A to real schur form (block upper 
diagonal) via an orthogonal transformation T. 

STRANS S1 S2 0 
Takes the transpose of (the transfer function matrix of) 
Sl and plces the result in S2 

Low level modules still to be developed are: 

ASDECOMP R R1 R2 

Given a system R finds R1 antistable and R2 stable such 
that R = R1 t R2. ( this requires what is almost a 
transformation to Jordan canonical form; an original 
algorithm has been developed to avoid many of the 
numerical instabilities, based on a method by Goluh 
and Van Loan [lS] for transforming a matrix to a special 
block diagonal form.) 

MINIMAL S1 S2 

Finds a minimal representation of the system Sl and places 
the result in file S2.  ( current plans are to use the 
“staircase” algorithm of Mayne [17]; if this algorithm 
proves unreliable a method due to Davison et. a1 [18] will 
be used. Davison’s method is based on random choices of 
feedback to identify unobservable and/or uncontrollable 
modes. ) 

MSQRT A C 

Finds a square root of a positive definite matrix A 
and places the result in file C 

INFNORM Sl SCALAR 

Finds the infinity norm of the system S1 and places the 
result in the file SCALAR. This involves first 
calculating the frequency response matrix of S1, and then 
calculating the maximum singular value at each frequency. 
This is the most numerically intensive step in the software 
system. An extremely efficient algorithm by Lauh [ 2 0 ]  will 
be used to calculate the frequency response matrix. 
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revel Modules 

High level modules will generally consist of batch-type 
files which contain a group of low level module commands. The 
full H- design system will in turn be comprised of a combination 
of the low level and high level modules. Most of the high level 
modules are currently under development. A partial list of the 
required modules and their functions follows. 

RICCATI AND LIAPUNOV EQUATION SOLUTIONS (existing) 

Name : CRICSOL, CLIASOL 

Other modules required: 

ZCRIC, ZCLIA, CSCHURS, SMUL 
SINV 

DOUBLY CO-PRIME FACTORIZATIONS 

Name : DCOFAC 

Other modules required: 

SADD, SMULT, SSEP, SCOM 
STRANS, CRICSCIL 

FORM Ti, T2, T3 ( TRANSFER FUNCTION PARAMETRIZATION) 

Name : TFORM 

Other modules required: 

SMULT , SADD, DCOFAC 

SPECTRAL FACTORIZATION 

Name : SPECFAC 

Other modules required: 

ASDECOMF, SADD, SMULT. SINV 
STRANS, CRICSOL, MSQRT, SSEP 
SCOM, SHTRANS, MINIMAL 

CO-SPECTRAL FACTORIZATION 
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Name : COSPECFAC 

Other modules required: 

STRANS, SPECFAC 

INNER-OUTER FACTORIZATION 

Name : IOFAC 

Other modules required: 

SHTRANS, SPECFAC, SMULT, SINV 

CO-INNER-OUTER FACTORIZATION 

Name : COIOFAC 

Other modules required: 

STRANS, IOFAC 

COMPUTING THE DISTANCE FROM A GIVEN ANTISTABLE SYSTEM TO THE 
NEAREST STABLE SYSTEM 

Name : HNORM 
0 

Other modules required: 

SSEP, CLIASOL , SCOM, RSCHIJR 
SMIJLT 

The reader at this point can appreciate the complexity of 
the software required to undertake an Hw design. The author 
believes that the module based approach is necessary to minimize 
development time and to maintain the required computer resources 
at a reasonable level. 

STIOJS FOR FUR.THER INVESTIGATION 

It has already been noted that a complete evaluation of the 
applicability of Ha, control to LSS problems must involve design 
studies, simulation studies, and ultimately tests on the MSFC 
LSS/GTF. To these ends, the obvious next step in the evaluation 
is to complete the development of a workable software system. 



Additionally, there are several other areas of investigation that, 
deserve attention. 

Although the strategy of casting disturbance attenuation, 
tracking and robust stabilization problems via the standard 
problem formulation is very powerful when combined with H m  
optimization, the actual design difficulties in LSS control 
involve the intelligent trade-off of performance and robustness. 
There are at least two aprtroaches that immediately present 
themselves for further investigation. The first is to attempt to 
cast both of these goals simultaneously into the standard problem 
with a scalar "emphasis ratio" as the trade-off design parameter. 
The second approach is to borrow from the classical concept of 
minor loop design. In this approach, an inner loop design would 
first be accomplished with robust stabilization as the goal. An 
outer loop would then be designed with performance in mind. The 
idea is that the outer loop could be designed with a high degree 
of confidence in the model used, since the inner, or minor, loop 
had been designed to minimize the effects of plant variations. 

Another issue of critical interest is that of controller 
complexity. Ha, optimization techniques typically result in high 
order controllers. Preliminary results by Doyle et al. E201 
indicate that the controller order can be maintained at the order 
of the open loop plant design model. However, this is probably 
unrealistic f o r  the very high order models typical of LSS. A 
possible method for obtaining reduced order controllers is by 
utilizing balanced model reduction E211 on controllers obtained 
using the full design model. Glover [ 2 2 J  has shown that the 
degree of order reduction is closely related to closed loop 
stability and has derived m infinity norm bound that quantifies 
the allowable reduction. 3afanov et al. E231 have recently 
presented reliable algorithms for calculating balanced reduced 
order controllers. It remains to be seen whether significant 
order reductions can be achieved in practical LSS problems. 

Still another issue is whether the additional design 
complexity of Ha optimization gains enough in terms of the design 
goals to justify its use. The possibility of using the 
controller/transfer function parametrization to obtain non- 
optimal, but satisfactory, controllers has not been addressed. 

Since the development of Hm optimization techniques is still 
in a state of evolution, it is difficult to make even a 
preliminary statement at this time regarding the eventual 
applications. There is no doubt, however, that the theory and 
computational techniques are sufficiently mature to begin an 
evaluation process. 
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